Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.

Identifieur interne : 002297 ( Main/Exploration ); précédent : 002296; suivant : 002298

Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.

Auteurs : Daehwan Chung [États-Unis] ; Sivakumar Pattathil [États-Unis] ; Ajaya K. Biswal [États-Unis] ; Michael G. Hahn [États-Unis] ; Debra Mohnen [États-Unis] ; Janet Westpheling [États-Unis]

Source :

RBID : pubmed:25324897

Abstract

BACKGROUND

A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance.

RESULTS

Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass.

CONCLUSIONS

The combination of microbial digestion and plant biomass analysis provides a new and important platform to identify plant wall structures whose presence reduces the ability of microbes to deconstruct plant walls and to identify enzymes that specifically deconstruct those structures.


DOI: 10.1186/s13068-014-0147-1
PubMed: 25324897
PubMed Central: PMC4198799


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.</title>
<author>
<name sortKey="Chung, Daehwan" sort="Chung, Daehwan" uniqKey="Chung D" first="Daehwan" last="Chung">Daehwan Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Biswal, Ajaya K" sort="Biswal, Ajaya K" uniqKey="Biswal A" first="Ajaya K" last="Biswal">Ajaya K. Biswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
<affiliation wicri:level="2">
<nlm:affiliation>The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Plant Biology, University of Georgia, Athens, GA 30602 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Plant Biology, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mohnen, Debra" sort="Mohnen, Debra" uniqKey="Mohnen D" first="Debra" last="Mohnen">Debra Mohnen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Westpheling, Janet" sort="Westpheling, Janet" uniqKey="Westpheling J" first="Janet" last="Westpheling">Janet Westpheling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25324897</idno>
<idno type="pmid">25324897</idno>
<idno type="doi">10.1186/s13068-014-0147-1</idno>
<idno type="pmc">PMC4198799</idno>
<idno type="wicri:Area/Main/Corpus">001F58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F58</idno>
<idno type="wicri:Area/Main/Curation">001F58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F58</idno>
<idno type="wicri:Area/Main/Exploration">001F58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.</title>
<author>
<name sortKey="Chung, Daehwan" sort="Chung, Daehwan" uniqKey="Chung D" first="Daehwan" last="Chung">Daehwan Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Biswal, Ajaya K" sort="Biswal, Ajaya K" uniqKey="Biswal A" first="Ajaya K" last="Biswal">Ajaya K. Biswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
<affiliation wicri:level="2">
<nlm:affiliation>The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Plant Biology, University of Georgia, Athens, GA 30602 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Plant Biology, University of Georgia, Athens</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mohnen, Debra" sort="Mohnen, Debra" uniqKey="Mohnen D" first="Debra" last="Mohnen">Debra Mohnen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Westpheling, Janet" sort="Westpheling, Janet" uniqKey="Westpheling J" first="Janet" last="Westpheling">Janet Westpheling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The combination of microbial digestion and plant biomass analysis provides a new and important platform to identify plant wall structures whose presence reduces the ability of microbes to deconstruct plant walls and to identify enzymes that specifically deconstruct those structures.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25324897</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.</ArticleTitle>
<Pagination>
<MedlinePgn>147</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-014-0147-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The combination of microbial digestion and plant biomass analysis provides a new and important platform to identify plant wall structures whose presence reduces the ability of microbes to deconstruct plant walls and to identify enzymes that specifically deconstruct those structures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Daehwan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pattathil</LastName>
<ForeName>Sivakumar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Biswal</LastName>
<ForeName>Ajaya K</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hahn</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; Department of Plant Biology, University of Georgia, Athens, GA 30602 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohnen</LastName>
<ForeName>Debra</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Westpheling</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioenergy</Keyword>
<Keyword MajorTopicYN="N">Biomass deconstruction</Keyword>
<Keyword MajorTopicYN="N">Pectin</Keyword>
<Keyword MajorTopicYN="N">Thermophile</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25324897</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-014-0147-1</ArticleId>
<ArticleId IdType="pii">147</ArticleId>
<ArticleId IdType="pmc">PMC4198799</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1973 Jan;51(1):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2013 Jan;40(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014;152:384-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24316482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jan;25(1):270-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23371948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1729-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22135470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 22;7(1):11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24450583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Apr 1;355(Pt 1):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 03;8(5):e62881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(24):8084-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20971878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;908:61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 29;6(1):82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23714229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Aug;194(15):4015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22636774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(14):4762-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Apr;39(8):3240-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21227922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Chung, Daehwan" sort="Chung, Daehwan" uniqKey="Chung D" first="Daehwan" last="Chung">Daehwan Chung</name>
</region>
<name sortKey="Biswal, Ajaya K" sort="Biswal, Ajaya K" uniqKey="Biswal A" first="Ajaya K" last="Biswal">Ajaya K. Biswal</name>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
<name sortKey="Mohnen, Debra" sort="Mohnen, Debra" uniqKey="Mohnen D" first="Debra" last="Mohnen">Debra Mohnen</name>
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
<name sortKey="Westpheling, Janet" sort="Westpheling, Janet" uniqKey="Westpheling J" first="Janet" last="Westpheling">Janet Westpheling</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002297 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002297 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25324897
   |texte=   Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25324897" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020